Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Commun Biol ; 5(1): 1039, 2022 09 30.
Article in English | MEDLINE | ID: covidwho-2050558

ABSTRACT

SARS-CoV-2 infection causes COVID-19, a severe acute respiratory disease associated with cardiovascular complications including long-term outcomes. The presence of virus in cardiac tissue of patients with COVID-19 suggests this is a direct, rather than secondary, effect of infection. Here, by expressing individual SARS-CoV-2 proteins in the Drosophila heart, we demonstrate interaction of virus Nsp6 with host proteins of the MGA/MAX complex (MGA, PCGF6 and TFDP1). Complementing transcriptomic data from the fly heart reveal that this interaction blocks the antagonistic MGA/MAX complex, which shifts the balance towards MYC/MAX and activates glycolysis-with similar findings in mouse cardiomyocytes. Further, the Nsp6-induced glycolysis disrupts cardiac mitochondrial function, known to increase reactive oxygen species (ROS) in heart failure; this could explain COVID-19-associated cardiac pathology. Inhibiting the glycolysis pathway by 2-deoxy-D-glucose (2DG) treatment attenuates the Nsp6-induced cardiac phenotype in flies and mice. These findings point to glycolysis as a potential pharmacological target for treating COVID-19-associated heart failure.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , COVID-19 , Drosophila Proteins/metabolism , Heart Failure , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Deoxyglucose/metabolism , Drosophila/metabolism , Glycolysis , Heart Failure/metabolism , Mice , Myocytes, Cardiac/metabolism , Polycomb Repressive Complex 1/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2
3.
Ther Adv Respir Dis ; 16: 17534666221081035, 2022.
Article in English | MEDLINE | ID: covidwho-1731495

ABSTRACT

BACKGROUND: Lung transplantation (LT) is the gold standard for various end-stage chronic lung diseases and could be a salvage therapeutic option in acute respiratory distress syndrome (ARDS). However, LT is uncertain in patients with coronavirus disease 2019 (COVID-19)-related ARDS who failed to recover despite optimal management including extracorporeal membrane oxygenation (ECMO). This study aims to describe the pooled experience of LT for patients with severe COVID-19-related ARDS in Korea. METHODS: A nationwide multicenter retrospective observational study was performed with consecutive LT for severe COVID-19-related ARDS in South Korea (June 2020-June 2021). Data were collected and compared with other LTs after bridging with ECMO from the Korean Organ Transplantation Registry. RESULTS: Eleven patients with COVID-19-related ARDS underwent LT. The median age was 60.0 years [interquartile range (IQR), 57.5-62.5; six males]. All patients were supported with venovenous ECMO at LT listing and received rehabilitation before LT. Patients were transplanted at a median of 49 (IQR, 32-66) days after ECMO cannulation. Primary graft dysfunction within 72 h of LT developed in two (18.2%). One patient expired 4 days after LT due to sepsis and one patient underwent retransplantation for graft failure. After a median follow-up of 322 (IQR, 299-397) days, 10 patients are alive and recovering well. Compared with other LTs after bridging with ECMO (n = 27), post-transplant outcomes were similar between the two groups. CONCLUSIONS: LT in patients with unresolving COVID-19-related ARDS were effective with reasonable short-term outcome.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Lung Transplantation , Respiratory Distress Syndrome , Humans , Lung Transplantation/adverse effects , Male , Middle Aged , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Retrospective Studies , SARS-CoV-2
4.
Cell Biosci ; 11(1): 58, 2021 Mar 25.
Article in English | MEDLINE | ID: covidwho-1154039

ABSTRACT

BACKGROUND: SARS-CoV-2 causes COVID-19 which has a widely diverse disease profile. The mechanisms underlying its pathogenicity remain unclear. We set out to identify the SARS-CoV-2 pathogenic proteins that through host interactions cause the cellular damages underlying COVID-19 symptomatology. METHODS: We examined each of the individual SARS-CoV-2 proteins for their cytotoxicity in HEK 293 T cells and their subcellular localization in COS-7 cells. We also used Mass-Spec Affinity purification to identify the host proteins interacting with SARS-CoV-2 Orf6 protein and tested a drug that could inhibit a specific Orf6 and host protein interaction. RESULTS: We found that Orf6, Nsp6 and Orf7a induced the highest toxicity when over-expressed in human 293 T cells. All three proteins showed membrane localization in COS-7 cells. We focused on Orf6, which was most cytotoxic and localized to the endoplasmic reticulum, autophagosome and lysosomal membranes. Proteomics revealed Orf6 interacts with nucleopore proteins (RAE1, XPO1, RANBP2 and nucleoporins). Treatment with Selinexor, an FDA-approved inhibitor for XPO1, attenuated Orf6-induced cellular toxicity in human 293 T cells. CONCLUSIONS: Our study revealed Orf6 as a highly pathogenic protein from the SARS-CoV-2 genome, identified its key host interacting proteins, and Selinexor as a drug candidate for directly targeting Orf6 host protein interaction that leads to cytotoxicity.

5.
Cell Biosci ; 11(1): 59, 2021 Mar 25.
Article in English | MEDLINE | ID: covidwho-1154037

ABSTRACT

BACKGROUND: SARS-CoV-2 causes COVID-19 with a widely diverse disease profile that affects many different tissues. The mechanisms underlying its pathogenicity in host organisms remain unclear. Animal models for studying the pathogenicity of SARS-CoV-2 proteins are lacking. METHODS: Using bioinformatic analysis, we found that 90% of the virus-host interactions involve human proteins conserved in Drosophila. Therefore, we generated a series of transgenic fly lines for individual SARS-CoV-2 genes, and used the Gal4-UAS system to express these viral genes in Drosophila to study their pathogenicity. RESULTS: We found that the ubiquitous expression of Orf6, Nsp6 or Orf7a in Drosophila led to reduced viability and tissue defects, including reduced trachea branching as well as muscle deficits resulting in a "held-up" wing phenotype and poor climbing ability. Furthermore, muscles in these flies showed dramatically reduced mitochondria. Since Orf6 was found to interact with nucleopore proteins XPO1, we tested Selinexor, a drug that inhibits XPO1, and found that it could attenuate the Orf6-induced lethality and tissue-specific phenotypes observed in flies. CONCLUSIONS: Our study established Drosophila as a model for studying the function of SARS-CoV2 genes, identified Orf6 as a highly pathogenic protein in various tissues, and demonstrated the potential of Selinexor for inhibiting Orf6 toxicity using an in vivo animal model system.

SELECTION OF CITATIONS
SEARCH DETAIL